Creates an Effect that represents a synchronous side-effectful computation.
Details
The provided function (thunk) must not throw errors; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
When to Use
Use this function when you are sure the operation will not fail.
@see ― try_try for a version that can handle failures.
@example
// Title: Logging a Message
import { Effect } from"effect"
constlog= (message:string) =>
Effect.sync(() => {
console.log(message) // side effect
})
// ┌─── Effect<void, never, never>
// ▼
constprogram=log("Hello, World!")
@since ― 2.0.0
sync(() => {
4
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Executes an effect synchronously, running it immediately and returning the
result.
Details
This function evaluates the provided effect synchronously, returning its
result directly. It is ideal for effects that do not fail or include
asynchronous operations. If the effect does fail or involves async tasks, it
will throw an error. Execution stops at the point of failure or asynchronous
operation, making it unsuitable for effects that require asynchronous
handling.
Important: Attempting to run effects that involve asynchronous operations
or failures will result in exceptions being thrown, so use this function with
care for purely synchronous and error-free effects.
When to Use
Use this function when:
You are sure that the effect will not fail or involve asynchronous
operations.
You need a direct, synchronous result from the effect.
You are working within a context where asynchronous effects are not
allowed.
Avoid using this function for effects that can fail or require asynchronous
handling. For such cases, consider using
runPromise
or
runSyncExit
.
@see ― runSyncExit for a version that returns an Exit type instead of
throwing an error.
@example
// Title: Synchronous Logging
import { Effect } from"effect"
constprogram= Effect.sync(() => {
console.log("Hello, World!")
return1
})
constresult= Effect.runSync(program)
// Output: Hello, World!
console.log(result)
// Output: 1
@example
// Title: Incorrect Usage with Failing or Async Effects
import { Effect } from "effect"
try {
// Attempt to run an effect that fails
Effect.runSync(Effect.fail("my error"))
} catch (e) {
console.error(e)
}
// Output:
// (FiberFailure) Error: my error
try {
// Attempt to run an effect that involves async work
Effect.runSync(Effect.promise(() => Promise.resolve(1)))
} catch (e) {
console.error(e)
}
// Output:
// (FiberFailure) AsyncFiberException: Fiber #0 cannot be resolved synchronously. This is caused by using runSync on an effect that performs async work
@since ― 2.0.0
runSync(
constprogram:Effect.Effect<number, never, never>
program)
9
// Output: Hello, World!
10
11
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Use Effect.runSync to run an effect that does not fail and does not include any asynchronous operations. If the effect fails or involves asynchronous work, it will throw an error, and execution will stop where the failure or async operation occurs.
Example (Incorrect Usage with Failing or Async Effects)
Executes an effect synchronously, running it immediately and returning the
result.
Details
This function evaluates the provided effect synchronously, returning its
result directly. It is ideal for effects that do not fail or include
asynchronous operations. If the effect does fail or involves async tasks, it
will throw an error. Execution stops at the point of failure or asynchronous
operation, making it unsuitable for effects that require asynchronous
handling.
Important: Attempting to run effects that involve asynchronous operations
or failures will result in exceptions being thrown, so use this function with
care for purely synchronous and error-free effects.
When to Use
Use this function when:
You are sure that the effect will not fail or involve asynchronous
operations.
You need a direct, synchronous result from the effect.
You are working within a context where asynchronous effects are not
allowed.
Avoid using this function for effects that can fail or require asynchronous
handling. For such cases, consider using
runPromise
or
runSyncExit
.
@see ― runSyncExit for a version that returns an Exit type instead of
throwing an error.
@example
// Title: Synchronous Logging
import { Effect } from"effect"
constprogram= Effect.sync(() => {
console.log("Hello, World!")
return1
})
constresult= Effect.runSync(program)
// Output: Hello, World!
console.log(result)
// Output: 1
@example
// Title: Incorrect Usage with Failing or Async Effects
import { Effect } from "effect"
try {
// Attempt to run an effect that fails
Effect.runSync(Effect.fail("my error"))
} catch (e) {
console.error(e)
}
// Output:
// (FiberFailure) Error: my error
try {
// Attempt to run an effect that involves async work
Effect.runSync(Effect.promise(() => Promise.resolve(1)))
} catch (e) {
console.error(e)
}
// Output:
// (FiberFailure) AsyncFiberException: Fiber #0 cannot be resolved synchronously. This is caused by using runSync on an effect that performs async work
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
@example
// Title: Creating a Failed Effect
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@since ― 2.0.0
fail("my error"))
6
} catch (
var e:unknown
e) {
7
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stderr with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
constcode=5;
console.error('error #%d', code);
// Prints: error #5, to stderr
console.error('error', code);
// Prints: error 5, to stderr
If formatting elements (e.g. %d) are not found in the first string then
util.inspect() is called on each argument and the
resulting string values are concatenated. See util.format()
for more information.
@since ― v0.1.100
error(
var e:unknown
e)
8
}
9
/*
10
Output:
11
(FiberFailure) Error: my error
12
*/
13
14
try {
15
// Attempt to run an effect that involves async work
Executes an effect synchronously, running it immediately and returning the
result.
Details
This function evaluates the provided effect synchronously, returning its
result directly. It is ideal for effects that do not fail or include
asynchronous operations. If the effect does fail or involves async tasks, it
will throw an error. Execution stops at the point of failure or asynchronous
operation, making it unsuitable for effects that require asynchronous
handling.
Important: Attempting to run effects that involve asynchronous operations
or failures will result in exceptions being thrown, so use this function with
care for purely synchronous and error-free effects.
When to Use
Use this function when:
You are sure that the effect will not fail or involve asynchronous
operations.
You need a direct, synchronous result from the effect.
You are working within a context where asynchronous effects are not
allowed.
Avoid using this function for effects that can fail or require asynchronous
handling. For such cases, consider using
runPromise
or
runSyncExit
.
@see ― runSyncExit for a version that returns an Exit type instead of
throwing an error.
@example
// Title: Synchronous Logging
import { Effect } from"effect"
constprogram= Effect.sync(() => {
console.log("Hello, World!")
return1
})
constresult= Effect.runSync(program)
// Output: Hello, World!
console.log(result)
// Output: 1
@example
// Title: Incorrect Usage with Failing or Async Effects
import { Effect } from "effect"
try {
// Attempt to run an effect that fails
Effect.runSync(Effect.fail("my error"))
} catch (e) {
console.error(e)
}
// Output:
// (FiberFailure) Error: my error
try {
// Attempt to run an effect that involves async work
Effect.runSync(Effect.promise(() => Promise.resolve(1)))
} catch (e) {
console.error(e)
}
// Output:
// (FiberFailure) AsyncFiberException: Fiber #0 cannot be resolved synchronously. This is caused by using runSync on an effect that performs async work
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
@see ― tryPromise for a version that can handle failures.
Creates a new resolved promise for the provided value.
@param ― value A promise.
@returns ― A promise whose internal state matches the provided promise.
resolve(1)))
17
} catch (
var e:unknown
e) {
18
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stderr with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
constcode=5;
console.error('error #%d', code);
// Prints: error #5, to stderr
console.error('error', code);
// Prints: error 5, to stderr
If formatting elements (e.g. %d) are not found in the first string then
util.inspect() is called on each argument and the
resulting string values are concatenated. See util.format()
for more information.
@since ― v0.1.100
error(
var e:unknown
e)
19
}
20
/*
21
Output:
22
(FiberFailure) AsyncFiberException: Fiber #0 cannot be resolved synchronously. This is caused by using runSync on an effect that performs async work
23
*/
runSyncExit
Runs an effect synchronously and returns the result as an Exit type, which represents the outcome (success or failure) of the effect.
Use Effect.runSyncExit to find out whether an effect succeeded or failed,
including any defects, without dealing with asynchronous operations.
The Exit type represents the result of the effect:
If the effect succeeds, the result is wrapped in a Success.
If it fails, the failure information is provided as a Failure containing
a Cause type.
Example (Handling Results as Exit)
1
import {
import Effect
@since ― 2.0.0
@since ― 2.0.0
@since ― 2.0.0
Effect } from"effect"
2
3
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Runs an effect synchronously and returns the result as an Exit type.
Details
This function executes the provided effect synchronously and returns an Exit
type that encapsulates the outcome of the effect:
If the effect succeeds, the result is wrapped in a Success.
If the effect fails, it returns a Failure containing a Cause that explains
the failure.
If the effect involves asynchronous operations, this function will return a Failure
with a Die cause, indicating that it cannot resolve the effect synchronously.
This makes the function suitable for use only with effects that are synchronous
in nature.
When to Use
Use this function when:
You want to handle both success and failure outcomes in a structured way using the Exit type.
You are working with effects that are purely synchronous and do not involve asynchronous operations.
You need to debug or inspect failures, including their causes, in a detailed manner.
Avoid using this function for effects that involve asynchronous operations, as it will fail with a Die cause.
Creates an Effect that always succeeds with a given value.
When to Use
Use this function when you need an effect that completes successfully with a
specific value without any errors or external dependencies.
@see ― fail to create an effect that represents a failure.
@example
// Title: Creating a Successful Effect
import { Effect } from"effect"
// Creating an effect that represents a successful scenario
//
// ┌─── Effect<number, never, never>
// ▼
constsuccess= Effect.succeed(42)
@since ― 2.0.0
succeed(1)))
4
/*
5
Output:
6
{
7
_id: "Exit",
8
_tag: "Success",
9
value: 1
10
}
11
*/
12
13
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Runs an effect synchronously and returns the result as an Exit type.
Details
This function executes the provided effect synchronously and returns an Exit
type that encapsulates the outcome of the effect:
If the effect succeeds, the result is wrapped in a Success.
If the effect fails, it returns a Failure containing a Cause that explains
the failure.
If the effect involves asynchronous operations, this function will return a Failure
with a Die cause, indicating that it cannot resolve the effect synchronously.
This makes the function suitable for use only with effects that are synchronous
in nature.
When to Use
Use this function when:
You want to handle both success and failure outcomes in a structured way using the Exit type.
You are working with effects that are purely synchronous and do not involve asynchronous operations.
You need to debug or inspect failures, including their causes, in a detailed manner.
Avoid using this function for effects that involve asynchronous operations, as it will fail with a Die cause.
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
@example
// Title: Creating a Failed Effect
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@since ― 2.0.0
fail("my error")))
14
/*
15
Output:
16
{
17
_id: "Exit",
18
_tag: "Failure",
19
cause: {
20
_id: "Cause",
21
_tag: "Fail",
22
failure: "my error"
23
}
24
}
25
*/
If the effect contains asynchronous operations, Effect.runSyncExit will
return an Failure with a Die cause, indicating that the effect cannot be
resolved synchronously.
Example (Asynchronous Operation Resulting in Die)
1
import {
import Effect
@since ― 2.0.0
@since ― 2.0.0
@since ― 2.0.0
Effect } from"effect"
2
3
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Runs an effect synchronously and returns the result as an Exit type.
Details
This function executes the provided effect synchronously and returns an Exit
type that encapsulates the outcome of the effect:
If the effect succeeds, the result is wrapped in a Success.
If the effect fails, it returns a Failure containing a Cause that explains
the failure.
If the effect involves asynchronous operations, this function will return a Failure
with a Die cause, indicating that it cannot resolve the effect synchronously.
This makes the function suitable for use only with effects that are synchronous
in nature.
When to Use
Use this function when:
You want to handle both success and failure outcomes in a structured way using the Exit type.
You are working with effects that are purely synchronous and do not involve asynchronous operations.
You need to debug or inspect failures, including their causes, in a detailed manner.
Avoid using this function for effects that involve asynchronous operations, as it will fail with a Die cause.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
@see ― tryPromise for a version that can handle failures.
Creates a new resolved promise for the provided value.
@param ― value A promise.
@returns ― A promise whose internal state matches the provided promise.
resolve(1))))
4
/*
5
Output:
6
{
7
_id: 'Exit',
8
_tag: 'Failure',
9
cause: {
10
_id: 'Cause',
11
_tag: 'Die',
12
defect: [Fiber #0 cannot be resolved synchronously. This is caused by using runSync on an effect that performs async work] {
13
fiber: [FiberRuntime],
14
_tag: 'AsyncFiberException',
15
name: 'AsyncFiberException'
16
}
17
}
18
}
19
*/
runPromise
Executes an effect and returns the result as a Promise.
Use Effect.runPromise when you need to execute an effect and work with the
result using Promise syntax, typically for compatibility with other
promise-based code.
Example (Running a Successful Effect as a Promise)
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
@see ― runPromiseExit for a version that returns an Exit type instead
of rejecting.
@example
// Title: Running a Successful Effect as a Promise
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
@see ― runPromiseExit for a version that returns an Exit type instead
of rejecting.
@example
// Title: Running a Successful Effect as a Promise
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
Attaches a callback for only the rejection of the Promise.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of the callback.
catch(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stderr with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
constcode=5;
console.error('error #%d', code);
// Prints: error #5, to stderr
console.error('error', code);
// Prints: error 5, to stderr
If formatting elements (e.g. %d) are not found in the first string then
util.inspect() is called on each argument and the
resulting string values are concatenated. See util.format()
for more information.
@since ― v0.1.100
error)
4
/*
5
Output:
6
(FiberFailure) Error: my error
7
*/
runPromiseExit
Runs an effect and returns a Promise that resolves to an Exit, which
represents the outcome (success or failure) of the effect.
Use Effect.runPromiseExit when you need to determine if an effect succeeded
or failed, including any defects, and you want to work with a Promise.
The Exit type represents the result of the effect:
If the effect succeeds, the result is wrapped in a Success.
If it fails, the failure information is provided as a Failure containing
a Cause type.
Runs an effect and returns a Promise that resolves to an Exit,
representing the outcome.
Details
This function executes an effect and resolves to an Exit object. The Exit
type provides detailed information about the result of the effect:
If the effect succeeds, the Exit will be of type Success and include
the value produced by the effect.
If the effect fails, the Exit will be of type Failure and contain a
Cause object, detailing the failure.
Using this function allows you to examine both successful results and failure
cases in a unified way, while still leveraging Promise for handling the
asynchronous behavior of the effect.
When to Use
Use this function when you need to understand the outcome of an effect,
whether it succeeded or failed, and want to work with this result using
Promise syntax. This is particularly useful when integrating with systems
that rely on promises but need more detailed error handling than a simple
rejection.
@example
// Title: Handling Results as Exit
import { Effect } from"effect"
// Execute a successful effect and get the Exit result as a Promise
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Runs an effect and returns a Promise that resolves to an Exit,
representing the outcome.
Details
This function executes an effect and resolves to an Exit object. The Exit
type provides detailed information about the result of the effect:
If the effect succeeds, the Exit will be of type Success and include
the value produced by the effect.
If the effect fails, the Exit will be of type Failure and contain a
Cause object, detailing the failure.
Using this function allows you to examine both successful results and failure
cases in a unified way, while still leveraging Promise for handling the
asynchronous behavior of the effect.
When to Use
Use this function when you need to understand the outcome of an effect,
whether it succeeded or failed, and want to work with this result using
Promise syntax. This is particularly useful when integrating with systems
that rely on promises but need more detailed error handling than a simple
rejection.
@example
// Title: Handling Results as Exit
import { Effect } from"effect"
// Execute a successful effect and get the Exit result as a Promise
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
The foundational function for running effects, returning a “fiber” that can be observed or interrupted.
Effect.runFork is used to run an effect in the background by creating a fiber. It is the base function
for all other run functions. It starts a fiber that can be observed or interrupted.
Repeats an effect based on a specified schedule or until the first failure.
Details
This function executes an effect repeatedly according to the given schedule.
Each repetition occurs after the initial execution of the effect, meaning
that the schedule determines the number of additional repetitions. For
example, using Schedule.once will result in the effect being executed twice
(once initially and once as part of the repetition).
If the effect succeeds, it is repeated according to the schedule. If it
fails, the repetition stops immediately, and the failure is returned.
The schedule can also specify delays between repetitions, making it useful
for tasks like retrying operations with backoff, periodic execution, or
performing a series of dependent actions.
You can combine schedules for more advanced repetition logic, such as adding
delays, limiting recursions, or dynamically adjusting based on the outcome of
each execution.
Returns a schedule that recurs continuously, with each repetition
spaced by the specified duration from the last run.
Details
This schedule ensures that executions occur at a fixed interval,
maintaining a consistent delay between repetitions. The delay starts
from the end of the last execution, not from the schedule start time.
@see ― fixed If you need to run at a fixed interval from the start.
Runs an effect in the background, returning a fiber that can be observed or
interrupted.
Unless you specifically need a Promise or synchronous operation, runFork
is a good default choice.
Details
This function is the foundational way to execute an effect in the background.
It creates a "fiber," a lightweight, cooperative thread of execution that can
be observed (to access its result), interrupted, or joined. Fibers are useful
for concurrent programming and allow effects to run independently of the main
program flow.
Once the effect is running in a fiber, you can monitor its progress, cancel
it if necessary, or retrieve its result when it completes. If the effect
fails, the fiber will propagate the failure, which you can observe and
handle.
When to Use
Use this function when you need to run an effect in the background,
especially if the effect is long-running or performs periodic tasks. It's
suitable for tasks that need to run independently but might still need
observation or management, like logging, monitoring, or scheduled tasks.
This function is ideal if you don't need the result immediately or if the
effect is part of a larger concurrent workflow.
Schedules execution of a one-time callback after delay milliseconds.
The callback will likely not be invoked in precisely delay milliseconds.
Node.js makes no guarantees about the exact timing of when callbacks will fire,
nor of their ordering. The callback will be called as close as possible to the
time specified.
When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.
If callback is not a function, a TypeError will be thrown.
This method has a custom variant for promises that is available using timersPromises.setTimeout().
@since ― v0.0.1
@param ― callback The function to call when the timer elapses.
@param ― delay The number of milliseconds to wait before calling the callback.
@param ― args Optional arguments to pass when the callback is called.
Runs an effect in the background, returning a fiber that can be observed or
interrupted.
Unless you specifically need a Promise or synchronous operation, runFork
is a good default choice.
Details
This function is the foundational way to execute an effect in the background.
It creates a "fiber," a lightweight, cooperative thread of execution that can
be observed (to access its result), interrupted, or joined. Fibers are useful
for concurrent programming and allow effects to run independently of the main
program flow.
Once the effect is running in a fiber, you can monitor its progress, cancel
it if necessary, or retrieve its result when it completes. If the effect
fails, the fiber will propagate the failure, which you can observe and
handle.
When to Use
Use this function when you need to run an effect in the background,
especially if the effect is long-running or performs periodic tasks. It's
suitable for tasks that need to run independently but might still need
observation or management, like logging, monitoring, or scheduled tasks.
This function is ideal if you don't need the result immediately or if the
effect is part of a larger concurrent workflow.
Interrupts the fiber from whichever fiber is calling this method. If the
fiber has already exited, the returned effect will resume immediately.
Otherwise, the effect will resume when the fiber exits.
@since ― 2.0.0
interrupt(
constfiber:Fiber.RuntimeFiber<number, never>
fiber))
16
}, 500)
In this example, the program continuously logs “running…” with each repetition spaced 200 milliseconds apart. You can learn more about repetitions and scheduling in our Introduction to Scheduling guide.
To stop the execution of the program, we use Fiber.interrupt on the fiber returned by Effect.runFork. This allows you to control the execution flow and terminate it when necessary.
For a deeper understanding of how fibers work and how to handle interruptions, check out our guides on Fibers and Interruptions.
Synchronous vs. Asynchronous Effects
In the Effect library, there is no built-in way to determine in advance whether an effect will execute synchronously or asynchronously. While this idea was considered in earlier versions of Effect, it was ultimately not implemented for a few important reasons:
Complexity: Introducing this feature to track sync/async behavior in the type system would make Effect more complex to use and limit its composability.
Safety Concerns: We experimented with different approaches to track asynchronous Effects, but they all resulted in a worse developer experience without significantly improving safety. Even with fully synchronous types, we needed to support a fromCallback combinator to work with APIs using Continuation-Passing Style (CPS). However, at the type level, it’s impossible to guarantee that such a function is always called immediately and not deferred.
Best Practices for Running Effects
In most cases, effects are run at the outermost parts of your application. Typically, an application built around Effect will involve a single call to the main effect. Here’s how you should approach effect execution:
Use runPromise or runFork: For most cases, asynchronous execution should be the default. These methods provide the best way to handle Effect-based workflows.
Use runSync only when necessary: Synchronous execution should be considered an edge case, used only in scenarios where asynchronous execution is not feasible. For example, when you are sure the effect is purely synchronous and need immediate results.
Cheatsheet
The table provides a summary of the available run* functions, along with their input and output types, allowing you to choose the appropriate function based on your needs.
API
Given
Result
runSync
Effect<A, E>
A
runSyncExit
Effect<A, E>
Exit<A, E>
runPromise
Effect<A, E>
Promise<A>
runPromiseExit
Effect<A, E>
Promise<Exit<A, E>>
runFork
Effect<A, E>
RuntimeFiber<A, E>
You can find the complete list of run* functions here.