Skip to content

Caching Effects

This section covers several functions from the library that help manage caching and memoization in your application.

Memoizes a function with effects, caching results for the same inputs to avoid recomputation.

Example (Memoizing a Random Number Generator)

import {
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
,
import Random
Random
} from "effect"
const
const program: Effect.Effect<void, never, never>
program
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const gen: <YieldWrap<Effect.Effect<number, never, never>> | YieldWrap<Effect.Effect<(a: number) => Effect.Effect<number, never, never>, never, never>>, void>(f: (resume: Effect.Adapter) => Generator<...>) => Effect.Effect<...> (+1 overload)

Provides a way to write effectful code using generator functions, simplifying control flow and error handling.

When to Use

gen allows you to write code that looks and behaves like synchronous code, but it can handle asynchronous tasks, errors, and complex control flow (like loops and conditions). It helps make asynchronous code more readable and easier to manage.

The generator functions work similarly to async/await but with more explicit control over the execution of effects. You can yield* values from effects and return the final result at the end.

@example

import { Effect } from "effect"
const addServiceCharge = (amount: number) => amount + 1
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
const fetchDiscountRate = Effect.promise(() => Promise.resolve(5))
export const program = Effect.gen(function* () {
const transactionAmount = yield* fetchTransactionAmount
const discountRate = yield* fetchDiscountRate
const discountedAmount = yield* applyDiscount(
transactionAmount,
discountRate
)
const finalAmount = addServiceCharge(discountedAmount)
return `Final amount to charge: ${finalAmount}`
})

@since2.0.0

gen
(function* () {
const
const randomNumber: (n: number) => Effect.Effect<number, never, never>
randomNumber
= (
n: number
n
: number) =>
import Random
Random
.
const nextIntBetween: (min: number, max: number) => Effect.Effect<number>

Returns the next integer value in the specified range from the pseudo-random number generator.

@since2.0.0

nextIntBetween
(1,
n: number
n
)
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("non-memoized version:")
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
(yield*
const randomNumber: (n: number) => Effect.Effect<number, never, never>
randomNumber
(10)) // Generates a new random number
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
(yield*
const randomNumber: (n: number) => Effect.Effect<number, never, never>
randomNumber
(10)) // Generates a different number
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("memoized version:")
const
const memoized: (a: number) => Effect.Effect<number, never, never>
memoized
= yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const cachedFunction: <number, number, never, never>(f: (a: number) => Effect.Effect<number, never, never>, eq?: Equivalence<number> | undefined) => Effect.Effect<(a: number) => Effect.Effect<number, never, never>, never, never>

Returns a memoized version of a function with effects. Memoization ensures that results are stored and reused for the same inputs, reducing the need to recompute them.

@example

import { Effect, Random } from "effect"
const program = Effect.gen(function* () {
const randomNumber = (n: number) => Random.nextIntBetween(1, n)
console.log("non-memoized version:")
console.log(yield* randomNumber(10))
console.log(yield* randomNumber(10))
console.log("memoized version:")
const memoized = yield* Effect.cachedFunction(randomNumber)
console.log(yield* memoized(10))
console.log(yield* memoized(10))
})
Effect.runFork(program)
// Example Output:
// non-memoized version:
// 2
// 8
// memoized version:
// 5
// 5

@since2.0.0

cachedFunction
(
const randomNumber: (n: number) => Effect.Effect<number, never, never>
randomNumber
)
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
(yield*
const memoized: (a: number) => Effect.Effect<number, never, never>
memoized
(10)) // Generates and caches the result
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
(yield*
const memoized: (a: number) => Effect.Effect<number, never, never>
memoized
(10)) // Reuses the cached result
})
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const runFork: <void, never>(effect: Effect.Effect<void, never, never>, options?: RunForkOptions) => RuntimeFiber<void, never>

The foundational function for running effects, returning a "fiber" that can be observed or interrupted.

When to Use

runFork is used to run an effect in the background by creating a fiber. It is the base function for all other run functions. It starts a fiber that can be observed or interrupted.

Unless you specifically need a Promise or synchronous operation, runFork is a good default choice.

@example

// Title: Running an Effect in the Background
import { Effect, Console, Schedule, Fiber } from "effect"
// ┌─── Effect<number, never, never>
// ▼
const program = Effect.repeat(
Console.log("running..."),
Schedule.spaced("200 millis")
)
// ┌─── RuntimeFiber<number, never>
// ▼
const fiber = Effect.runFork(program)
setTimeout(() => {
Effect.runFork(Fiber.interrupt(fiber))
}, 500)

@since2.0.0

runFork
(
const program: Effect.Effect<void, never, never>
program
)
/*
Example Output:
non-memoized version:
2
8
memoized version:
5
5
*/

Ensures an effect is executed only once, even if invoked multiple times.

Example (Single Execution of an Effect)

import {
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
,
import Console
Console
} from "effect"
const
const program: Effect.Effect<void, never, never>
program
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const gen: <YieldWrap<Effect.Effect<void, never, never>>, void>(f: (resume: Effect.Adapter) => Generator<YieldWrap<Effect.Effect<void, never, never>>, void, never>) => Effect.Effect<...> (+1 overload)

Provides a way to write effectful code using generator functions, simplifying control flow and error handling.

When to Use

gen allows you to write code that looks and behaves like synchronous code, but it can handle asynchronous tasks, errors, and complex control flow (like loops and conditions). It helps make asynchronous code more readable and easier to manage.

The generator functions work similarly to async/await but with more explicit control over the execution of effects. You can yield* values from effects and return the final result at the end.

@example

import { Effect } from "effect"
const addServiceCharge = (amount: number) => amount + 1
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
const fetchDiscountRate = Effect.promise(() => Promise.resolve(5))
export const program = Effect.gen(function* () {
const transactionAmount = yield* fetchTransactionAmount
const discountRate = yield* fetchDiscountRate
const discountedAmount = yield* applyDiscount(
transactionAmount,
discountRate
)
const finalAmount = addServiceCharge(discountedAmount)
return `Final amount to charge: ${finalAmount}`
})

@since2.0.0

gen
(function* () {
const
const task1: Effect.Effect<void, never, never>
task1
=
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
("task1")
// Repeats task1 three times
yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const repeatN: <void, never, never>(self: Effect.Effect<void, never, never>, n: number) => Effect.Effect<void, never, never> (+1 overload)

The repeatN function returns a new effect that repeats the specified effect a given number of times or until the first failure. The repeats are in addition to the initial execution, so repeatN(action, 1) executes action once initially and then repeats it one additional time if it succeeds.

@example

import { Effect, Console } from "effect"
const action = Console.log("success")
const program = Effect.repeatN(action, 2)
Effect.runPromise(program)

@since2.0.0

repeatN
(
const task1: Effect.Effect<void, never, never>
task1
, 2)
// Ensures task2 is executed only once
const
const task2: Effect.Effect<void, never, never>
task2
= yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const once: <void, never, never>(self: Effect.Effect<void, never, never>) => Effect.Effect<Effect.Effect<void, never, never>, never, never>

Returns an effect that executes only once, regardless of how many times it's called.

@example

import { Effect, Console } from "effect"
const program = Effect.gen(function* () {
const task1 = Console.log("task1")
yield* Effect.repeatN(task1, 2)
const task2 = yield* Effect.once(Console.log("task2"))
yield* Effect.repeatN(task2, 2)
})
Effect.runFork(program)
// Output:
// task1
// task1
// task1
// task2

@since2.0.0

once
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
("task2"))
// Attempts to repeat task2, but it will only execute once
yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const repeatN: <void, never, never>(self: Effect.Effect<void, never, never>, n: number) => Effect.Effect<void, never, never> (+1 overload)

The repeatN function returns a new effect that repeats the specified effect a given number of times or until the first failure. The repeats are in addition to the initial execution, so repeatN(action, 1) executes action once initially and then repeats it one additional time if it succeeds.

@example

import { Effect, Console } from "effect"
const action = Console.log("success")
const program = Effect.repeatN(action, 2)
Effect.runPromise(program)

@since2.0.0

repeatN
(
const task2: Effect.Effect<void, never, never>
task2
, 2)
})
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const runFork: <void, never>(effect: Effect.Effect<void, never, never>, options?: RunForkOptions) => RuntimeFiber<void, never>

The foundational function for running effects, returning a "fiber" that can be observed or interrupted.

When to Use

runFork is used to run an effect in the background by creating a fiber. It is the base function for all other run functions. It starts a fiber that can be observed or interrupted.

Unless you specifically need a Promise or synchronous operation, runFork is a good default choice.

@example

// Title: Running an Effect in the Background
import { Effect, Console, Schedule, Fiber } from "effect"
// ┌─── Effect<number, never, never>
// ▼
const program = Effect.repeat(
Console.log("running..."),
Schedule.spaced("200 millis")
)
// ┌─── RuntimeFiber<number, never>
// ▼
const fiber = Effect.runFork(program)
setTimeout(() => {
Effect.runFork(Fiber.interrupt(fiber))
}, 500)

@since2.0.0

runFork
(
const program: Effect.Effect<void, never, never>
program
)
/*
Output:
task1
task1
task1
task2
*/

Returns an effect that computes a result lazily and caches it. Subsequent evaluations of this effect will return the cached result without re-executing the logic.

Example (Lazy Caching of an Expensive Task)

import {
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
,
import Console
Console
} from "effect"
let
let i: number
i
= 1
// Simulating an expensive task with a delay
const
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const promise: <string>(evaluate: (signal: AbortSignal) => PromiseLike<string>) => Effect.Effect<string, never, never>

Creates an Effect that represents an asynchronous computation guaranteed to succeed.

When to Use

Use promise when you are sure the operation will not reject.

Details

The provided function (thunk) returns a Promise that should never reject; if it does, the error will be treated as a "defect".

This defect is not a standard error but indicates a flaw in the logic that was expected to be error-free. You can think of it similar to an unexpected crash in the program, which can be further managed or logged using tools like

catchAllDefect

.

Interruptions

An optional AbortSignal can be provided to allow for interruption of the wrapped Promise API.

@seetryPromise for a version that can handle failures.

@example

// Title: Delayed Message
import { Effect } from "effect"
const delay = (message: string) =>
Effect.promise<string>(
() =>
new Promise((resolve) => {
setTimeout(() => {
resolve(message)
}, 2000)
})
)
// ┌─── Effect<string, never, never>
// ▼
const program = delay("Async operation completed successfully!")

@since2.0.0

promise
<string>(() => {
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
globalThis.Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("expensive task...")
return new
var Promise: PromiseConstructor
new <string>(executor: (resolve: (value: string | PromiseLike<string>) => void, reject: (reason?: any) => void) => void) => Promise<string>

Creates a new Promise.

@paramexecutor A callback used to initialize the promise. This callback is passed two arguments: a resolve callback used to resolve the promise with a value or the result of another promise, and a reject callback used to reject the promise with a provided reason or error.

Promise
((
resolve: (value: string | PromiseLike<string>) => void
resolve
) => {
function setTimeout<[]>(callback: () => void, ms?: number): NodeJS.Timeout (+1 overload)

Schedules execution of a one-time callback after delay milliseconds.

The callback will likely not be invoked in precisely delay milliseconds. Node.js makes no guarantees about the exact timing of when callbacks will fire, nor of their ordering. The callback will be called as close as possible to the time specified.

When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.

If callback is not a function, a TypeError will be thrown.

This method has a custom variant for promises that is available using timersPromises.setTimeout().

@sincev0.0.1

@paramcallback The function to call when the timer elapses.

@paramdelay The number of milliseconds to wait before calling the callback.

@paramargs Optional arguments to pass when the callback is called.

setTimeout
(() => {
resolve: (value: string | PromiseLike<string>) => void
resolve
(`result ${
let i: number
i
++}`)
}, 100)
})
})
const
const program: Effect.Effect<void, never, never>
program
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const gen: <YieldWrap<Effect.Effect<void, never, never>>, void>(f: (resume: Effect.Adapter) => Generator<YieldWrap<Effect.Effect<void, never, never>>, void, never>) => Effect.Effect<...> (+1 overload)

Provides a way to write effectful code using generator functions, simplifying control flow and error handling.

When to Use

gen allows you to write code that looks and behaves like synchronous code, but it can handle asynchronous tasks, errors, and complex control flow (like loops and conditions). It helps make asynchronous code more readable and easier to manage.

The generator functions work similarly to async/await but with more explicit control over the execution of effects. You can yield* values from effects and return the final result at the end.

@example

import { Effect } from "effect"
const addServiceCharge = (amount: number) => amount + 1
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
const fetchDiscountRate = Effect.promise(() => Promise.resolve(5))
export const program = Effect.gen(function* () {
const transactionAmount = yield* fetchTransactionAmount
const discountRate = yield* fetchDiscountRate
const discountedAmount = yield* applyDiscount(
transactionAmount,
discountRate
)
const finalAmount = addServiceCharge(discountedAmount)
return `Final amount to charge: ${finalAmount}`
})

@since2.0.0

gen
(function* () {
// Without caching, the task is executed each time
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
globalThis.Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("-- non-cached version:")
yield*
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
yield*
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
// With caching, the result is reused after the first run
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
globalThis.Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("-- cached version:")
const
const cached: Effect.Effect<string, never, never>
cached
= yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const cached: <string, never, never>(self: Effect.Effect<string, never, never>) => Effect.Effect<Effect.Effect<string, never, never>, never, never>

Returns an effect that computes a result lazily and caches it. Subsequent evaluations of this effect will return the cached result without re-executing the logic.

@example

import { Effect, Console } from "effect"
let i = 1
const expensiveTask = Effect.promise<string>(() => {
console.log("expensive task...")
return new Promise((resolve) => {
setTimeout(() => {
resolve(`result ${i++}`)
}, 100)
})
})
const program = Effect.gen(function* () {
console.log("non-cached version:")
yield* expensiveTask.pipe(Effect.andThen(Console.log))
yield* expensiveTask.pipe(Effect.andThen(Console.log))
console.log("cached version:")
const cached = yield* Effect.cached(expensiveTask)
yield* cached.pipe(Effect.andThen(Console.log))
yield* cached.pipe(Effect.andThen(Console.log))
})
Effect.runFork(program)
// Output:
// non-cached version:
// expensive task...
// result 1
// expensive task...
// result 2
// cached version:
// expensive task...
// result 3
// result 3

@since2.0.0

cached
(
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
)
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
})
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const runFork: <void, never>(effect: Effect.Effect<void, never, never>, options?: RunForkOptions) => RuntimeFiber<void, never>

The foundational function for running effects, returning a "fiber" that can be observed or interrupted.

When to Use

runFork is used to run an effect in the background by creating a fiber. It is the base function for all other run functions. It starts a fiber that can be observed or interrupted.

Unless you specifically need a Promise or synchronous operation, runFork is a good default choice.

@example

// Title: Running an Effect in the Background
import { Effect, Console, Schedule, Fiber } from "effect"
// ┌─── Effect<number, never, never>
// ▼
const program = Effect.repeat(
Console.log("running..."),
Schedule.spaced("200 millis")
)
// ┌─── RuntimeFiber<number, never>
// ▼
const fiber = Effect.runFork(program)
setTimeout(() => {
Effect.runFork(Fiber.interrupt(fiber))
}, 500)

@since2.0.0

runFork
(
const program: Effect.Effect<void, never, never>
program
)
/*
Output:
-- non-cached version:
expensive task...
result 1
expensive task...
result 2
-- cached version:
expensive task...
result 3
result 3
*/

Returns an effect that caches its result for a specified duration, known as the timeToLive. When the cache expires after the duration, the effect will be recomputed upon next evaluation.

Example (Caching with Time-to-Live)

import {
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
,
import Console
Console
} from "effect"
let
let i: number
i
= 1
// Simulating an expensive task with a delay
const
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const promise: <string>(evaluate: (signal: AbortSignal) => PromiseLike<string>) => Effect.Effect<string, never, never>

Creates an Effect that represents an asynchronous computation guaranteed to succeed.

When to Use

Use promise when you are sure the operation will not reject.

Details

The provided function (thunk) returns a Promise that should never reject; if it does, the error will be treated as a "defect".

This defect is not a standard error but indicates a flaw in the logic that was expected to be error-free. You can think of it similar to an unexpected crash in the program, which can be further managed or logged using tools like

catchAllDefect

.

Interruptions

An optional AbortSignal can be provided to allow for interruption of the wrapped Promise API.

@seetryPromise for a version that can handle failures.

@example

// Title: Delayed Message
import { Effect } from "effect"
const delay = (message: string) =>
Effect.promise<string>(
() =>
new Promise((resolve) => {
setTimeout(() => {
resolve(message)
}, 2000)
})
)
// ┌─── Effect<string, never, never>
// ▼
const program = delay("Async operation completed successfully!")

@since2.0.0

promise
<string>(() => {
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
globalThis.Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("expensive task...")
return new
var Promise: PromiseConstructor
new <string>(executor: (resolve: (value: string | PromiseLike<string>) => void, reject: (reason?: any) => void) => void) => Promise<string>

Creates a new Promise.

@paramexecutor A callback used to initialize the promise. This callback is passed two arguments: a resolve callback used to resolve the promise with a value or the result of another promise, and a reject callback used to reject the promise with a provided reason or error.

Promise
((
resolve: (value: string | PromiseLike<string>) => void
resolve
) => {
function setTimeout<[]>(callback: () => void, ms?: number): NodeJS.Timeout (+1 overload)

Schedules execution of a one-time callback after delay milliseconds.

The callback will likely not be invoked in precisely delay milliseconds. Node.js makes no guarantees about the exact timing of when callbacks will fire, nor of their ordering. The callback will be called as close as possible to the time specified.

When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.

If callback is not a function, a TypeError will be thrown.

This method has a custom variant for promises that is available using timersPromises.setTimeout().

@sincev0.0.1

@paramcallback The function to call when the timer elapses.

@paramdelay The number of milliseconds to wait before calling the callback.

@paramargs Optional arguments to pass when the callback is called.

setTimeout
(() => {
resolve: (value: string | PromiseLike<string>) => void
resolve
(`result ${
let i: number
i
++}`)
}, 100)
})
})
const
const program: Effect.Effect<void, never, never>
program
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const gen: <YieldWrap<Effect.Effect<void, never, never>>, void>(f: (resume: Effect.Adapter) => Generator<YieldWrap<Effect.Effect<void, never, never>>, void, never>) => Effect.Effect<...> (+1 overload)

Provides a way to write effectful code using generator functions, simplifying control flow and error handling.

When to Use

gen allows you to write code that looks and behaves like synchronous code, but it can handle asynchronous tasks, errors, and complex control flow (like loops and conditions). It helps make asynchronous code more readable and easier to manage.

The generator functions work similarly to async/await but with more explicit control over the execution of effects. You can yield* values from effects and return the final result at the end.

@example

import { Effect } from "effect"
const addServiceCharge = (amount: number) => amount + 1
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
const fetchDiscountRate = Effect.promise(() => Promise.resolve(5))
export const program = Effect.gen(function* () {
const transactionAmount = yield* fetchTransactionAmount
const discountRate = yield* fetchDiscountRate
const discountedAmount = yield* applyDiscount(
transactionAmount,
discountRate
)
const finalAmount = addServiceCharge(discountedAmount)
return `Final amount to charge: ${finalAmount}`
})

@since2.0.0

gen
(function* () {
// Caches the result for 150 milliseconds
const
const cached: Effect.Effect<string, never, never>
cached
= yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const cachedWithTTL: <string, never, never>(self: Effect.Effect<string, never, never>, timeToLive: DurationInput) => Effect.Effect<Effect.Effect<string, never, never>, never, never> (+1 overload)

Returns an effect that caches its result for a specified duration, known as the timeToLive. When the cache expires after the duration, the effect will be recomputed upon next evaluation.

@example

import { Effect, Console } from "effect"
let i = 1
const expensiveTask = Effect.promise<string>(() => {
console.log("expensive task...")
return new Promise((resolve) => {
setTimeout(() => {
resolve(`result ${i++}`)
}, 100)
})
})
const program = Effect.gen(function* () {
const cached = yield* Effect.cachedWithTTL(expensiveTask, "150 millis")
yield* cached.pipe(Effect.andThen(Console.log))
yield* cached.pipe(Effect.andThen(Console.log))
yield* Effect.sleep("100 millis")
yield* cached.pipe(Effect.andThen(Console.log))
})
Effect.runFork(program)
// Output:
// expensive task...
// result 1
// result 1
// expensive task...
// result 2

@since2.0.0

cachedWithTTL
(
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
, "150 millis")
// First evaluation triggers the task
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
// Second evaluation returns the cached result
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
// Wait for 100 milliseconds, ensuring the cache expires
yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const sleep: (duration: DurationInput) => Effect.Effect<void>

Returns an effect that suspends for the specified duration. This method is asynchronous, and does not actually block the fiber executing the effect.

@since2.0.0

sleep
("100 millis")
// Recomputes the task after cache expiration
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
})
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const runFork: <void, never>(effect: Effect.Effect<void, never, never>, options?: RunForkOptions) => RuntimeFiber<void, never>

The foundational function for running effects, returning a "fiber" that can be observed or interrupted.

When to Use

runFork is used to run an effect in the background by creating a fiber. It is the base function for all other run functions. It starts a fiber that can be observed or interrupted.

Unless you specifically need a Promise or synchronous operation, runFork is a good default choice.

@example

// Title: Running an Effect in the Background
import { Effect, Console, Schedule, Fiber } from "effect"
// ┌─── Effect<number, never, never>
// ▼
const program = Effect.repeat(
Console.log("running..."),
Schedule.spaced("200 millis")
)
// ┌─── RuntimeFiber<number, never>
// ▼
const fiber = Effect.runFork(program)
setTimeout(() => {
Effect.runFork(Fiber.interrupt(fiber))
}, 500)

@since2.0.0

runFork
(
const program: Effect.Effect<void, never, never>
program
)
/*
Output:
expensive task...
result 1
result 1
expensive task...
result 2
*/

Similar to Effect.cachedWithTTL, this function caches an effect’s result for a specified duration. It also includes an additional effect for manually invalidating the cached value before it naturally expires.

Example (Invalidating Cache Manually)

import {
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
,
import Console
Console
} from "effect"
let
let i: number
i
= 1
// Simulating an expensive task with a delay
const
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const promise: <string>(evaluate: (signal: AbortSignal) => PromiseLike<string>) => Effect.Effect<string, never, never>

Creates an Effect that represents an asynchronous computation guaranteed to succeed.

When to Use

Use promise when you are sure the operation will not reject.

Details

The provided function (thunk) returns a Promise that should never reject; if it does, the error will be treated as a "defect".

This defect is not a standard error but indicates a flaw in the logic that was expected to be error-free. You can think of it similar to an unexpected crash in the program, which can be further managed or logged using tools like

catchAllDefect

.

Interruptions

An optional AbortSignal can be provided to allow for interruption of the wrapped Promise API.

@seetryPromise for a version that can handle failures.

@example

// Title: Delayed Message
import { Effect } from "effect"
const delay = (message: string) =>
Effect.promise<string>(
() =>
new Promise((resolve) => {
setTimeout(() => {
resolve(message)
}, 2000)
})
)
// ┌─── Effect<string, never, never>
// ▼
const program = delay("Async operation completed successfully!")

@since2.0.0

promise
<string>(() => {
var console: Console

The console module provides a simple debugging console that is similar to the JavaScript console mechanism provided by web browsers.

The module exports two specific components:

  • A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
  • A global console instance configured to write to process.stdout and process.stderr. The global console can be used without importing the node:console module.

Warning: The global console object's methods are neither consistently synchronous like the browser APIs they resemble, nor are they consistently asynchronous like all other Node.js streams. See the note on process I/O for more information.

Example using the global console:

console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(new Error('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
const name = 'Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr

Example using the Console class:

const out = getStreamSomehow();
const err = getStreamSomehow();
const myConsole = new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(new Error('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
const name = 'Will Robinson';
myConsole.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to err

@seesource

console
.
globalThis.Console.log(message?: any, ...optionalParams: any[]): void

Prints to stdout with newline. Multiple arguments can be passed, with the first used as the primary message and all additional used as substitution values similar to printf(3) (the arguments are all passed to util.format()).

const count = 5;
console.log('count: %d', count);
// Prints: count: 5, to stdout
console.log('count:', count);
// Prints: count: 5, to stdout

See util.format() for more information.

@sincev0.1.100

log
("expensive task...")
return new
var Promise: PromiseConstructor
new <string>(executor: (resolve: (value: string | PromiseLike<string>) => void, reject: (reason?: any) => void) => void) => Promise<string>

Creates a new Promise.

@paramexecutor A callback used to initialize the promise. This callback is passed two arguments: a resolve callback used to resolve the promise with a value or the result of another promise, and a reject callback used to reject the promise with a provided reason or error.

Promise
((
resolve: (value: string | PromiseLike<string>) => void
resolve
) => {
function setTimeout<[]>(callback: () => void, ms?: number): NodeJS.Timeout (+1 overload)

Schedules execution of a one-time callback after delay milliseconds.

The callback will likely not be invoked in precisely delay milliseconds. Node.js makes no guarantees about the exact timing of when callbacks will fire, nor of their ordering. The callback will be called as close as possible to the time specified.

When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.

If callback is not a function, a TypeError will be thrown.

This method has a custom variant for promises that is available using timersPromises.setTimeout().

@sincev0.0.1

@paramcallback The function to call when the timer elapses.

@paramdelay The number of milliseconds to wait before calling the callback.

@paramargs Optional arguments to pass when the callback is called.

setTimeout
(() => {
resolve: (value: string | PromiseLike<string>) => void
resolve
(`result ${
let i: number
i
++}`)
}, 100)
})
})
const
const program: Effect.Effect<void, never, never>
program
=
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const gen: <YieldWrap<Effect.Effect<void, never, never>>, void>(f: (resume: Effect.Adapter) => Generator<YieldWrap<Effect.Effect<void, never, never>>, void, never>) => Effect.Effect<...> (+1 overload)

Provides a way to write effectful code using generator functions, simplifying control flow and error handling.

When to Use

gen allows you to write code that looks and behaves like synchronous code, but it can handle asynchronous tasks, errors, and complex control flow (like loops and conditions). It helps make asynchronous code more readable and easier to manage.

The generator functions work similarly to async/await but with more explicit control over the execution of effects. You can yield* values from effects and return the final result at the end.

@example

import { Effect } from "effect"
const addServiceCharge = (amount: number) => amount + 1
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
const fetchDiscountRate = Effect.promise(() => Promise.resolve(5))
export const program = Effect.gen(function* () {
const transactionAmount = yield* fetchTransactionAmount
const discountRate = yield* fetchDiscountRate
const discountedAmount = yield* applyDiscount(
transactionAmount,
discountRate
)
const finalAmount = addServiceCharge(discountedAmount)
return `Final amount to charge: ${finalAmount}`
})

@since2.0.0

gen
(function* () {
// Caches the result for 150 milliseconds
const [
const cached: Effect.Effect<string, never, never>
cached
,
const invalidate: Effect.Effect<void, never, never>
invalidate
] = yield*
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const cachedInvalidateWithTTL: <string, never, never>(self: Effect.Effect<string, never, never>, timeToLive: DurationInput) => Effect.Effect<[Effect.Effect<string, never, never>, Effect.Effect<...>], never, never> (+1 overload)

Similar to

cachedWithTTL

, this function caches an effect's result for a specified duration. It also includes an additional effect for manually invalidating the cached value before it naturally expires.

@example

import { Effect, Console } from "effect"
let i = 1
const expensiveTask = Effect.promise<string>(() => {
console.log("expensive task...")
return new Promise((resolve) => {
setTimeout(() => {
resolve(`result ${i++}`)
}, 100)
})
})
const program = Effect.gen(function* () {
const [cached, invalidate] = yield* Effect.cachedInvalidateWithTTL(
expensiveTask,
"1 hour"
)
yield* cached.pipe(Effect.andThen(Console.log))
yield* cached.pipe(Effect.andThen(Console.log))
yield* invalidate
yield* cached.pipe(Effect.andThen(Console.log))
})
Effect.runFork(program)
// Output:
// expensive task...
// result 1
// result 1
// expensive task...
// result 2

@since2.0.0

cachedInvalidateWithTTL
(
const expensiveTask: Effect.Effect<string, never, never>
expensiveTask
,
"150 millis"
)
// First evaluation triggers the task
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
// Second evaluation returns the cached result
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
// Invalidate the cache before it naturally expires
yield*
const invalidate: Effect.Effect<void, never, never>
invalidate
// Third evaluation triggers the task again
// since the cache was invalidated
yield*
const cached: Effect.Effect<string, never, never>
cached
.
Pipeable.pipe<Effect.Effect<string, never, never>, Effect.Effect<void, never, never>>(this: Effect.Effect<...>, ab: (_: Effect.Effect<string, never, never>) => Effect.Effect<void, never, never>): Effect.Effect<...> (+21 overloads)
pipe
(
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const andThen: <string, Effect.Effect<void, never, never>>(f: (a: string) => Effect.Effect<void, never, never>) => <E, R>(self: Effect.Effect<string, E, R>) => Effect.Effect<...> (+3 overloads)

Chains two actions, where the second action can depend on the result of the first.

Syntax

const transformedEffect = pipe(myEffect, Effect.andThen(anotherEffect))
// or
const transformedEffect = Effect.andThen(myEffect, anotherEffect)
// or
const transformedEffect = myEffect.pipe(Effect.andThen(anotherEffect))

When to Use

Use andThen when you need to run multiple actions in sequence, with the second action depending on the result of the first. This is useful for combining effects or handling computations that must happen in order.

Details

The second action can be:

  • A constant value (similar to

as

)

  • A function returning a value (similar to

map

)

  • A Promise
  • A function returning a Promise
  • An Effect
  • A function returning an Effect (similar to

flatMap

)

Note: andThen works well with both Option and Either types, treating them as effects.

@example

// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from "effect"
// Function to apply a discount safely to a transaction amount
const applyDiscount = (
total: number,
discountRate: number
): Effect.Effect<number, Error> =>
discountRate === 0
? Effect.fail(new Error("Discount rate cannot be zero"))
: Effect.succeed(total - (total * discountRate) / 100)
// Simulated asynchronous task to fetch a transaction amount from database
const fetchTransactionAmount = Effect.promise(() => Promise.resolve(100))
// Using Effect.map and Effect.flatMap
const result1 = pipe(
fetchTransactionAmount,
Effect.map((amount) => amount * 2),
Effect.flatMap((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result1).then(console.log)
// Output: 190
// Using Effect.andThen
const result2 = pipe(
fetchTransactionAmount,
Effect.andThen((amount) => amount * 2),
Effect.andThen((amount) => applyDiscount(amount, 5))
)
Effect.runPromise(result2).then(console.log)
// Output: 190

@since2.0.0

andThen
(
import Console
Console
.
const log: (...args: ReadonlyArray<any>) => Effect.Effect<void>

@since2.0.0

log
))
})
import Effect

@since2.0.0

@since2.0.0

@since2.0.0

Effect
.
const runFork: <void, never>(effect: Effect.Effect<void, never, never>, options?: RunForkOptions) => RuntimeFiber<void, never>

The foundational function for running effects, returning a "fiber" that can be observed or interrupted.

When to Use

runFork is used to run an effect in the background by creating a fiber. It is the base function for all other run functions. It starts a fiber that can be observed or interrupted.

Unless you specifically need a Promise or synchronous operation, runFork is a good default choice.

@example

// Title: Running an Effect in the Background
import { Effect, Console, Schedule, Fiber } from "effect"
// ┌─── Effect<number, never, never>
// ▼
const program = Effect.repeat(
Console.log("running..."),
Schedule.spaced("200 millis")
)
// ┌─── RuntimeFiber<number, never>
// ▼
const fiber = Effect.runFork(program)
setTimeout(() => {
Effect.runFork(Fiber.interrupt(fiber))
}, 500)

@since2.0.0

runFork
(
const program: Effect.Effect<void, never, never>
program
)
/*
Output:
expensive task...
result 1
result 1
expensive task...
result 2
*/