Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
The repeatN function returns a new effect that repeats the specified effect a
given number of times or until the first failure. The repeats are in addition
to the initial execution, so repeatN(action, 1) executes action once
initially and then repeats it one additional time if it succeeds.
The repeatN function returns a new effect that repeats the specified effect a
given number of times or until the first failure. The repeats are in addition
to the initial execution, so repeatN(action, 1) executes action once
initially and then repeats it one additional time if it succeeds.
The foundational function for running effects, returning a "fiber" that can
be observed or interrupted.
When to Use
runFork is used to run an effect in the background by creating a
fiber. It is the base function for all other run functions. It starts a fiber
that can be observed or interrupted.
Unless you specifically need a Promise or synchronous operation,
runFork is a good default choice.
Returns an effect that computes a result lazily and caches it. Subsequent evaluations of this effect will return the cached result without re-executing the logic.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
When to Use
Use promise when you are sure the operation will not reject.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
@see ― tryPromise for a version that can handle failures.
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
new <string>(executor: (resolve: (value:string|PromiseLike<string>) =>void, reject: (reason?:any) =>void) =>void) =>Promise<string>
Creates a new Promise.
@param ― executor A callback used to initialize the promise. This callback is passed two arguments:
a resolve callback used to resolve the promise with a value or the result of another promise,
and a reject callback used to reject the promise with a provided reason or error.
Schedules execution of a one-time callback after delay milliseconds.
The callback will likely not be invoked in precisely delay milliseconds.
Node.js makes no guarantees about the exact timing of when callbacks will fire,
nor of their ordering. The callback will be called as close as possible to the
time specified.
When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.
If callback is not a function, a TypeError will be thrown.
This method has a custom variant for promises that is available using timersPromises.setTimeout().
@since ― v0.0.1
@param ― callback The function to call when the timer elapses.
@param ― delay The number of milliseconds to wait before calling the callback.
@param ― args Optional arguments to pass when the callback is called.
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
// Without caching, the task is executed each time
17
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
// With caching, the result is reused after the first run
22
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Returns an effect that computes a result lazily and caches it. Subsequent
evaluations of this effect will return the cached result without re-executing
the logic.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
The foundational function for running effects, returning a "fiber" that can
be observed or interrupted.
When to Use
runFork is used to run an effect in the background by creating a
fiber. It is the base function for all other run functions. It starts a fiber
that can be observed or interrupted.
Unless you specifically need a Promise or synchronous operation,
runFork is a good default choice.
Returns an effect that caches its result for a specified duration, known as the timeToLive. When the cache expires after the duration, the effect will be recomputed upon next evaluation.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
When to Use
Use promise when you are sure the operation will not reject.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
@see ― tryPromise for a version that can handle failures.
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
new <string>(executor: (resolve: (value:string|PromiseLike<string>) =>void, reject: (reason?:any) =>void) =>void) =>Promise<string>
Creates a new Promise.
@param ― executor A callback used to initialize the promise. This callback is passed two arguments:
a resolve callback used to resolve the promise with a value or the result of another promise,
and a reject callback used to reject the promise with a provided reason or error.
Schedules execution of a one-time callback after delay milliseconds.
The callback will likely not be invoked in precisely delay milliseconds.
Node.js makes no guarantees about the exact timing of when callbacks will fire,
nor of their ordering. The callback will be called as close as possible to the
time specified.
When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.
If callback is not a function, a TypeError will be thrown.
This method has a custom variant for promises that is available using timersPromises.setTimeout().
@since ― v0.0.1
@param ― callback The function to call when the timer elapses.
@param ― delay The number of milliseconds to wait before calling the callback.
@param ― args Optional arguments to pass when the callback is called.
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
Returns an effect that caches its result for a specified duration, known as
the timeToLive. When the cache expires after the duration, the effect will
be recomputed upon next evaluation.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
The foundational function for running effects, returning a "fiber" that can
be observed or interrupted.
When to Use
runFork is used to run an effect in the background by creating a
fiber. It is the base function for all other run functions. It starts a fiber
that can be observed or interrupted.
Unless you specifically need a Promise or synchronous operation,
runFork is a good default choice.
Similar to Effect.cachedWithTTL, this function caches an effect’s result for a specified duration. It also includes an additional effect for manually invalidating the cached value before it naturally expires.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
When to Use
Use promise when you are sure the operation will not reject.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
@see ― tryPromise for a version that can handle failures.
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
new <string>(executor: (resolve: (value:string|PromiseLike<string>) =>void, reject: (reason?:any) =>void) =>void) =>Promise<string>
Creates a new Promise.
@param ― executor A callback used to initialize the promise. This callback is passed two arguments:
a resolve callback used to resolve the promise with a value or the result of another promise,
and a reject callback used to reject the promise with a provided reason or error.
Schedules execution of a one-time callback after delay milliseconds.
The callback will likely not be invoked in precisely delay milliseconds.
Node.js makes no guarantees about the exact timing of when callbacks will fire,
nor of their ordering. The callback will be called as close as possible to the
time specified.
When delay is larger than 2147483647 or less than 1, the delay will be set to 1. Non-integer delays are truncated to an integer.
If callback is not a function, a TypeError will be thrown.
This method has a custom variant for promises that is available using timersPromises.setTimeout().
@since ― v0.0.1
@param ― callback The function to call when the timer elapses.
@param ― delay The number of milliseconds to wait before calling the callback.
@param ― args Optional arguments to pass when the callback is called.
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
, this function caches an effect's result for
a specified duration. It also includes an additional effect for manually
invalidating the cached value before it naturally expires.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
@example
// Title: Applying a Discount Based on Fetched Amount
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
The foundational function for running effects, returning a "fiber" that can
be observed or interrupted.
When to Use
runFork is used to run an effect in the background by creating a
fiber. It is the base function for all other run functions. It starts a fiber
that can be observed or interrupted.
Unless you specifically need a Promise or synchronous operation,
runFork is a good default choice.