In software development, it’s common to encounter situations where an operation may fail temporarily due to various factors such as network issues, resource unavailability, or external dependencies. In such cases, it’s often desirable to retry the operation automatically, allowing it to succeed eventually.
Retrying is a powerful mechanism to handle transient failures and ensure the successful execution of critical operations. In Effect retrying is made simple and flexible with built-in functions and scheduling strategies.
In this guide, we will explore the concept of retrying in Effect and learn how to use the retry and retryOrElse functions to handle failure scenarios. We’ll see how to define retry policies using schedules, which dictate when and how many times the operation should be retried.
Whether you’re working on network requests, database interactions, or any other potentially error-prone operations, mastering the retrying capabilities of effect can significantly enhance the resilience and reliability of your applications.
retry
The Effect.retry function takes an effect and a Schedule policy, and will automatically retry the effect if it fails, following the rules of the policy.
If the effect ultimately succeeds, the result will be returned.
If the maximum retries are exhausted and the effect still fails, the failure is propagated.
This can be useful when dealing with intermittent failures, such as network issues or temporary resource unavailability. By defining a retry policy, you can control the number of retries, the delay between them, and when to stop retrying.
Creates an Effect from a callback-based asynchronous function.
Details
The resume function:
Must be called exactly once. Any additional calls will be ignored.
Can return an optional Effect that will be run if the Fiber executing
this Effect is interrupted. This can be useful in scenarios where you
need to handle resource cleanup if the operation is interrupted.
Can receive an AbortSignal to handle interruption if needed.
The FiberId of the fiber that may complete the async callback may also be
specified using the blockingOn argument. This is called the "blocking
fiber" because it suspends the fiber executing the async effect (i.e.
semantically blocks the fiber from making progress). Specifying this fiber id
in cases where it is known will improve diagnostics, but not affect the
behavior of the returned effect.
When to Use
Use Effect.async when dealing with APIs that use callback-style instead of
async/await or Promise.
@example
// Title: Wrapping a Callback API
import { Effect } from"effect"
import*as NodeFS from"node:fs"
constreadFile= (filename:string) =>
Effect.async<Buffer, Error>((resume) => {
NodeFS.readFile(filename, (error, data) => {
if (error) {
// Resume with a failed Effect if an error occurs
resume(Effect.fail(error))
} else {
// Resume with a succeeded Effect if successful
resume(Effect.succeed(data))
}
})
})
// ┌─── Effect<Buffer, Error, never>
// ▼
constprogram=readFile("example.txt")
@example
// Title: Handling Interruption with Cleanup
import { Effect, Fiber } from "effect"
import * as NodeFS from "node:fs"
// Simulates a long-running operation to write to a file
const writeFileWithCleanup = (filename: string, data: string) =>
Effect.async<void, Error>((resume) => {
const writeStream = NodeFS.createWriteStream(filename)
// Start writing data to the file
writeStream.write(data)
// When the stream is finished, resume with success
// Handle interruption by returning a cleanup effect
return Effect.sync(() => {
console.log(`Cleaning up ${filename}`)
NodeFS.unlinkSync(filename)
})
})
const program = Effect.gen(function* () {
const fiber = yield* Effect.fork(
writeFileWithCleanup("example.txt", "Some long data...")
)
// Simulate interrupting the fiber after 1 second
yield* Effect.sleep("1 second")
yield* Fiber.interrupt(fiber) // This will trigger the cleanup
})
// Run the program
// Effect.runPromise(program)
// Output:
// Cleaning up example.txt
@example
// Title: Handling Interruption with AbortSignal
import { Effect, Fiber } from "effect"
// A task that supports interruption using AbortSignal
const interruptibleTask = Effect.async<void, Error>((resume, signal) => {
// Handle interruption
signal.addEventListener("abort", () => {
console.log("Abort signal received")
clearTimeout(timeoutId)
})
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
@example
// Title: Creating a Failed Effect
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@since ― 2.0.0
fail(new
var Error:ErrorConstructor
new (message?:string) => Error
Error()))
11
} else {
12
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates a schedule that recurs at a fixed interval.
Details
This schedule executes at regular, evenly spaced intervals, returning the
number of times it has run so far. If the action being executed takes longer
than the interval, the next execution will happen immediately to prevent
"pile-ups," ensuring that the schedule remains consistent without overlapping
executions.
Retries a failing effect based on a defined retry policy.
Details
The Effect.retry function takes an effect and a
Schedule
policy,
and will automatically retry the effect if it fails, following the rules of
the policy.
If the effect ultimately succeeds, the result will be returned.
If the maximum retries are exhausted and the effect still fails, the failure
is propagated.
When to Use
This can be useful when dealing with intermittent failures, such as network
issues or temporary resource unavailability. By defining a retry policy, you
can control the number of retries, the delay between them, and when to stop
retrying.
@see ― retryOrElse for a version that allows you to run a fallback.
@see ― repeat if your retry condition is based on successful outcomes rather than errors.
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
@see ― runPromiseExit for a version that returns an Exit type instead
of rejecting.
@example
// Title: Running a Successful Effect as a Promise
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates an Effect from a callback-based asynchronous function.
Details
The resume function:
Must be called exactly once. Any additional calls will be ignored.
Can return an optional Effect that will be run if the Fiber executing
this Effect is interrupted. This can be useful in scenarios where you
need to handle resource cleanup if the operation is interrupted.
Can receive an AbortSignal to handle interruption if needed.
The FiberId of the fiber that may complete the async callback may also be
specified using the blockingOn argument. This is called the "blocking
fiber" because it suspends the fiber executing the async effect (i.e.
semantically blocks the fiber from making progress). Specifying this fiber id
in cases where it is known will improve diagnostics, but not affect the
behavior of the returned effect.
When to Use
Use Effect.async when dealing with APIs that use callback-style instead of
async/await or Promise.
@example
// Title: Wrapping a Callback API
import { Effect } from"effect"
import*as NodeFS from"node:fs"
constreadFile= (filename:string) =>
Effect.async<Buffer, Error>((resume) => {
NodeFS.readFile(filename, (error, data) => {
if (error) {
// Resume with a failed Effect if an error occurs
resume(Effect.fail(error))
} else {
// Resume with a succeeded Effect if successful
resume(Effect.succeed(data))
}
})
})
// ┌─── Effect<Buffer, Error, never>
// ▼
constprogram=readFile("example.txt")
@example
// Title: Handling Interruption with Cleanup
import { Effect, Fiber } from "effect"
import * as NodeFS from "node:fs"
// Simulates a long-running operation to write to a file
const writeFileWithCleanup = (filename: string, data: string) =>
Effect.async<void, Error>((resume) => {
const writeStream = NodeFS.createWriteStream(filename)
// Start writing data to the file
writeStream.write(data)
// When the stream is finished, resume with success
// Handle interruption by returning a cleanup effect
return Effect.sync(() => {
console.log(`Cleaning up ${filename}`)
NodeFS.unlinkSync(filename)
})
})
const program = Effect.gen(function* () {
const fiber = yield* Effect.fork(
writeFileWithCleanup("example.txt", "Some long data...")
)
// Simulate interrupting the fiber after 1 second
yield* Effect.sleep("1 second")
yield* Fiber.interrupt(fiber) // This will trigger the cleanup
})
// Run the program
// Effect.runPromise(program)
// Output:
// Cleaning up example.txt
@example
// Title: Handling Interruption with AbortSignal
import { Effect, Fiber } from "effect"
// A task that supports interruption using AbortSignal
const interruptibleTask = Effect.async<void, Error>((resume, signal) => {
// Handle interruption
signal.addEventListener("abort", () => {
console.log("Abort signal received")
clearTimeout(timeoutId)
})
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
@example
// Title: Creating a Failed Effect
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@since ― 2.0.0
fail(new
var Error:ErrorConstructor
new (message?:string) => Error
Error()))
11
} else {
12
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
@see ― runPromiseExit for a version that returns an Exit type instead
of rejecting.
@example
// Title: Running a Successful Effect as a Promise
Retries a failing effect based on a defined retry policy.
Details
The Effect.retry function takes an effect and a
Schedule
policy,
and will automatically retry the effect if it fails, following the rules of
the policy.
If the effect ultimately succeeds, the result will be returned.
If the maximum retries are exhausted and the effect still fails, the failure
is propagated.
When to Use
This can be useful when dealing with intermittent failures, such as network
issues or temporary resource unavailability. By defining a retry policy, you
can control the number of retries, the delay between them, and when to stop
retrying.
@see ― retryOrElse for a version that allows you to run a fallback.
@see ― repeat if your retry condition is based on successful outcomes rather than errors.
Creates an Effect that fails with the specified error, evaluated lazily.
@since ― 2.0.0
failSync(() => {
7
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Retries a failing effect based on a defined retry policy.
Details
The Effect.retry function takes an effect and a
Schedule
policy,
and will automatically retry the effect if it fails, following the rules of
the policy.
If the effect ultimately succeeds, the result will be returned.
If the maximum retries are exhausted and the effect still fails, the failure
is propagated.
When to Use
This can be useful when dealing with intermittent failures, such as network
issues or temporary resource unavailability. By defining a retry policy, you
can control the number of retries, the delay between them, and when to stop
retrying.
@see ― retryOrElse for a version that allows you to run a fallback.
@see ― repeat if your retry condition is based on successful outcomes rather than errors.
Runs an effect and returns a Promise that resolves to an Exit,
representing the outcome.
Details
This function executes an effect and resolves to an Exit object. The Exit
type provides detailed information about the result of the effect:
If the effect succeeds, the Exit will be of type Success and include
the value produced by the effect.
If the effect fails, the Exit will be of type Failure and contain a
Cause object, detailing the failure.
Using this function allows you to examine both successful results and failure
cases in a unified way, while still leveraging Promise for handling the
asynchronous behavior of the effect.
When to Use
Use this function when you need to understand the outcome of an effect,
whether it succeeded or failed, and want to work with this result using
Promise syntax. This is particularly useful when integrating with systems
that rely on promises but need more detailed error handling than a simple
rejection.
@example
// Title: Handling Results as Exit
import { Effect } from"effect"
// Execute a successful effect and get the Exit result as a Promise
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates an Effect from a callback-based asynchronous function.
Details
The resume function:
Must be called exactly once. Any additional calls will be ignored.
Can return an optional Effect that will be run if the Fiber executing
this Effect is interrupted. This can be useful in scenarios where you
need to handle resource cleanup if the operation is interrupted.
Can receive an AbortSignal to handle interruption if needed.
The FiberId of the fiber that may complete the async callback may also be
specified using the blockingOn argument. This is called the "blocking
fiber" because it suspends the fiber executing the async effect (i.e.
semantically blocks the fiber from making progress). Specifying this fiber id
in cases where it is known will improve diagnostics, but not affect the
behavior of the returned effect.
When to Use
Use Effect.async when dealing with APIs that use callback-style instead of
async/await or Promise.
@example
// Title: Wrapping a Callback API
import { Effect } from"effect"
import*as NodeFS from"node:fs"
constreadFile= (filename:string) =>
Effect.async<Buffer, Error>((resume) => {
NodeFS.readFile(filename, (error, data) => {
if (error) {
// Resume with a failed Effect if an error occurs
resume(Effect.fail(error))
} else {
// Resume with a succeeded Effect if successful
resume(Effect.succeed(data))
}
})
})
// ┌─── Effect<Buffer, Error, never>
// ▼
constprogram=readFile("example.txt")
@example
// Title: Handling Interruption with Cleanup
import { Effect, Fiber } from "effect"
import * as NodeFS from "node:fs"
// Simulates a long-running operation to write to a file
const writeFileWithCleanup = (filename: string, data: string) =>
Effect.async<void, Error>((resume) => {
const writeStream = NodeFS.createWriteStream(filename)
// Start writing data to the file
writeStream.write(data)
// When the stream is finished, resume with success
// Handle interruption by returning a cleanup effect
return Effect.sync(() => {
console.log(`Cleaning up ${filename}`)
NodeFS.unlinkSync(filename)
})
})
const program = Effect.gen(function* () {
const fiber = yield* Effect.fork(
writeFileWithCleanup("example.txt", "Some long data...")
)
// Simulate interrupting the fiber after 1 second
yield* Effect.sleep("1 second")
yield* Fiber.interrupt(fiber) // This will trigger the cleanup
})
// Run the program
// Effect.runPromise(program)
// Output:
// Cleaning up example.txt
@example
// Title: Handling Interruption with AbortSignal
import { Effect, Fiber } from "effect"
// A task that supports interruption using AbortSignal
const interruptibleTask = Effect.async<void, Error>((resume, signal) => {
// Handle interruption
signal.addEventListener("abort", () => {
console.log("Abort signal received")
clearTimeout(timeoutId)
})
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
@see ― succeed to create an effect that represents a successful value.
@example
// Title: Creating a Failed Effect
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@since ― 2.0.0
fail(new
var Error:ErrorConstructor
new (message?:string) => Error
Error()))
11
} else {
12
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
This function modifies a given schedule by applying an additional delay to
every interval it defines. The delay is determined by the provided function,
which takes the schedule's output and returns a delay duration.
@see ― addDelayEffect If you need to compute the delay using an effectful function.
A schedule that recurs a fixed number of times before terminating.
Details
This schedule will continue executing until it has been stepped n times,
after which it will stop. The output of the schedule is the current count of
recurrences.
constas: <string>(value:string) => <A, E, R>(self:Effect.Effect<A, E, R>) =>Effect.Effect<string, E, R> (+1overload)
Replaces the value inside an effect with a constant value.
Details
This function allows you to ignore the original value inside an effect and
replace it with a constant value.
When to Use
It is useful when you no longer need the value produced by an effect but want
to ensure that the effect completes successfully with a specific constant
result instead. For instance, you can replace the value produced by a
computation with a predefined value, ignoring what was calculated before.
@example
// Title: Replacing a Value
import { pipe, Effect } from"effect"
// Replaces the value 5 with the constant "new value"
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
@see ― runPromiseExit for a version that returns an Exit type instead
of rejecting.
@example
// Title: Running a Successful Effect as a Promise
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).