Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
Effect.gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
Runs the command returning the entire output as a string with the
specified encoding.
If an encoding is not specified, the encoding will default to utf-8.
@since ― 1.0.0
string(
constcommand:Command.Command
command)
11
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
Effect.gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
Returns the exit code of the command after the process has completed
execution.
@since ― 1.0.0
exitCode(
constcommand:Command.Command
command)
9
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
You can customize environment variables in a command by using Command.env. This is useful when you need specific variables for the command’s execution.
Example (Setting Environment Variables)
In this example, the command runs in a shell to ensure environment variables are correctly processed.
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
Effect.gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
Runs the command returning the entire output as a string with the
specified encoding.
If an encoding is not specified, the encoding will default to utf-8.
@since ― 1.0.0
string(
constcommand:Command.Command
command)
16
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
Effect.gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
You can access details about a running process, such as exitCode, stdout, and stderr.
Example (Accessing Exit Code and Streams from a Running Process)
1
import {
import Command
Command } from"@effect/platform"
2
import {
import NodeContext
NodeContext,
import NodeRuntime
NodeRuntime } from"@effect/platform-node"
3
import {
import Effect
@since ― 2.0.0
@since ― 2.0.0
@since ― 2.0.0
Effect,
import Stream
Stream,
import String
String,
functionpipe<A>(a:A):A (+19overloads)
Pipes the value of an expression into a pipeline of functions.
When to Use
This is useful in combination with data-last functions as a simulation of
methods:
as.map(f).filter(g)
becomes:
import { pipe, Array } from"effect"
pipe(as, Array.map(f), Array.filter(g))
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
// Helper function to collect stream output as a string
6
const
construnString: <E, R>(stream:Stream.Stream<Uint8Array, E, R>) =>Effect.Effect<string, E, R>
runString= <
function (typeparameter) Ein <E, R>(stream:Stream.Stream<Uint8Array, E, R>):Effect.Effect<string, E, R>
E,
function (typeparameter) Rin <E, R>(stream:Stream.Stream<Uint8Array, E, R>):Effect.Effect<string, E, R>
R>(
7
stream: Stream.Stream<Uint8Array<ArrayBufferLike>, E, R>
stream:
import Stream
Stream.
interfaceStream<outA, outE=never, outR=never>
A Stream<A, E, R> is a description of a program that, when evaluated, may
emit zero or more values of type A, may fail with errors of type E, and
uses an context of type R. One way to think of Stream is as a
Effect program that could emit multiple values.
Stream is a purely functional pull based stream. Pull based streams offer
inherent laziness and backpressure, relieving users of the need to manage
buffers between operators. As an optimization, Stream does not emit
single values, but rather an array of values. This allows the cost of effect
evaluation to be amortized.
Stream forms a monad on its A type parameter, and has error management
facilities for its E type parameter, modeled similarly to Effect (with
some adjustments for the multiple-valued nature of Stream). These aspects
allow for rich and expressive composition of streams.
A typed array of 8-bit unsigned integer values. The contents are initialized to 0. If the
requested number of bytes could not be allocated an exception is raised.
Uint8Array,
function (typeparameter) Ein <E, R>(stream:Stream.Stream<Uint8Array, E, R>):Effect.Effect<string, E, R>
E,
function (typeparameter) Rin <E, R>(stream:Stream.Stream<Uint8Array, E, R>):Effect.Effect<string, E, R>
R>
8
):
import Effect
@since ― 2.0.0
@since ― 2.0.0
@since ― 2.0.0
Effect.
interfaceEffect<outA, outE=never, outR=never>
The Effect interface defines a value that describes a workflow or job,
which can succeed or fail.
Details
The Effect interface represents a computation that can model a workflow
involving various types of operations, such as synchronous, asynchronous,
concurrent, and parallel interactions. It operates within a context of type
R, and the result can either be a success with a value of type A or a
failure with an error of type E. The Effect is designed to handle complex
interactions with external resources, offering advanced features such as
fiber-based concurrency, scheduling, interruption handling, and scalability.
This makes it suitable for tasks that require fine-grained control over
concurrency and error management.
To execute an Effect value, you need a Runtime, which provides the
environment necessary to run and manage the computation.
@since ― 2.0.0
@since ― 2.0.0
Effect<string,
function (typeparameter) Ein <E, R>(stream:Stream.Stream<Uint8Array, E, R>):Effect.Effect<string, E, R>
E,
function (typeparameter) Rin <E, R>(stream:Stream.Stream<Uint8Array, E, R>):Effect.Effect<string, E, R>
R> =>
9
stream: Stream.Stream<Uint8Array<ArrayBufferLike>, E, R>
stream.
Pipeable.pipe<Stream.Stream<Uint8Array<ArrayBufferLike>, E, R>, Stream.Stream<string, E, R>, Effect.Effect<string, E, R>>(this: Stream.Stream<...>, ab: (_:Stream.Stream<...>) => Stream.Stream<...>, bc: (_:Stream.Stream<...>) => Effect.Effect<...>): Effect.Effect<...> (+21 overloads)
pipe(
10
import Stream
Stream.
constdecodeText: (encoding?:string|undefined) => <E, R>(self:Stream.Stream<Uint8Array, E, R>) =>Stream.Stream<string, E, R> (+1overload)
Decode Uint8Array chunks into a stream of strings using the specified encoding.
@since ― 2.0.0
decodeText(),
11
import Stream
Stream.
construnFold: <string, string>(s:string, f: (s:string, a:string) =>string) => <E, R>(self:Stream.Stream<string, E, R>) =>Effect.Effect<string, E, R> (+1overload)
Executes a pure fold over the stream of values - reduces all elements in
the stream to a value of type S.
Provides a way to write effectful code using generator functions, simplifying
control flow and error handling.
When to Use
Effect.gen allows you to write code that looks and behaves like synchronous
code, but it can handle asynchronous tasks, errors, and complex control flow
(like loops and conditions). It helps make asynchronous code more readable
and easier to manage.
The generator functions work similarly to async/await but with more
explicit control over the execution of effects. You can yield* values from
effects and return the final result at the end.
Pipes the value of an expression into a pipeline of functions.
When to Use
This is useful in combination with data-last functions as a simulation of
methods:
as.map(f).filter(g)
becomes:
import { pipe, Array } from"effect"
pipe(as, Array.map(f), Array.filter(g))
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Use flatMap when you need to chain multiple effects, ensuring that each
step produces a new Effect while flattening any nested effects that may
occur.
Details
flatMap lets you sequence effects so that the result of one effect can be
used in the next step. It is similar to flatMap used with arrays but works
specifically with Effect instances, allowing you to avoid deeply nested
effect structures.
Since effects are immutable, flatMap always returns a new effect instead of
changing the original one.
@example
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Combines multiple effects into one, returning results based on the input
structure.
Details
Use this function when you need to run multiple effects and combine their
results into a single output. It supports tuples, iterables, structs, and
records, making it flexible for different input types.
For instance, if the input is a tuple:
// ┌─── a tuple of effects
// ▼
Effect.all([effect1, effect2, ...])
the effects are executed sequentially, and the result is a new effect
containing the results as a tuple. The results in the tuple match the order
of the effects passed to Effect.all.
Concurrency
You can control the execution order (e.g., sequential vs. concurrent) using
the concurrency option.
Short-Circuiting Behavior
This function stops execution on the first error it encounters, this is
called "short-circuiting". If any effect in the collection fails, the
remaining effects will not run, and the error will be propagated. To change
this behavior, you can use the mode option, which allows all effects to run
and collect results as Either or Option.
The mode option
The { mode: "either" } option changes the behavior of Effect.all to
ensure all effects run, even if some fail. Instead of stopping on the first
failure, this mode collects both successes and failures, returning an array
of Either instances where each result is either a Right (success) or a
Left (failure).
Similarly, the { mode: "validate" } option uses Option to indicate
success or failure. Each effect returns None for success and Some with
the error for failure.
@see ― forEach for iterating over elements and applying an effect.
@see ― allWith for a data-last version of this function.
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Scopes all resources used in this workflow to the lifetime of the workflow,
ensuring that their finalizers are run as soon as this workflow completes
execution, whether by success, failure, or interruption.